
Why is C the safest language?
By Eskil Steenberg Hald 2025

Representative of Sweden in iso Wg14

eskil at quelsolaar dot com

The most trusted software in the world like OpenSSL, Apache, MySQL, Curl,
CPython, PHP, the GNU free software collection, most OS kernels, and most
filesystems are all written in C. No other language has managed to produce
anywhere near the same amount of safety and security critical software deployed
the world over as C. In evolutionary terms, it is clear that security critical C
projects have a much higher survival rate than security critical projects written
in any other languages.

Despite the overwhelming success of C as a language for developing security
critical software, many security researchers claim that C is an unsafe language
that should be avoided for security critical software. They take it as a given
that C is unsafe, because of some of C features, most notably the lack or re-
quired of bounds checking. This is a very unscientific to assume this feature
would out weigh possible other benefits of using C, when clearly this feature
haven’t stopped C from being the most successful language in security. When
assumption says one thing but real world experience says something completely
different, its time to re-evaluate ones assumptions.

If security researchers, are interested in research that is based on scientific
method, they should clearly want to investigate why C has produced so many
successful security critical projects, instead of dismissing C as an insecure lan-
guage, against clear evidence. Security researches should investigate various
explanations for why C has been so successful, despite the reasons for why
someone may think it shouldn’t be. To simply dismiss all the people who have
chosen C as their language, and then have gone on to produced the most trusted
software on the planet, as simply not knowing what they are doing, is both dis-
respectful and ignorant, and should not be part of scientific discord with the
ultimate goal of finding the truth and making progress.

Actual research in to why C have been so successful for security critical software
could have great impact on future security policy, possible language design,
how we see Cs future, and generally how we think about software development.
Simply ignoring C developers success, or worse trying to gaslight the world in to
thinking C developer have not had great contribution to the security of software,
robs the world of valuable insights in to how successful software is developed.

As an experienced C developer, I have a number of hypothesise as to why C
have been so successful, that warrants further research. I want to be clear, I
am not a researcher, nor am I claiming to present quantitative evidence for
these theories. I do however think they are among theories that should be
thoroughly investigated. As part of this list of theories, I also want to point

1



out some possible ramifications for how we should view software development if
they shown to bare out.

Theory 1: Its about readability.
C is language with very few abstractions. This makes it very easy to read and
reason about the code. The difficulty in writing code is almost always to close the
gap between, what the code does, and what the code is meant to do. Therefor
being able to follow every step of execution, and have each step be explicit aids
greatly. C code becomes safe, because it is easy to reason about, and easy to
audit. Most things are written in place, and therefor require less knowledge of
a larger system in order to be understood. This lack of interconnectedness that
abstractions create also makes it harder to for changes in one part of the code
to break other parts of the code. C is a verbose, explicit language and while
this creates a less convenient programming experience, it creates trustworthy
software. An interesting observations is that other “unsafe” C derived languages
like C++ and Objective-C, have produced has less of the most trusted safety
critical software. This indicates that the simplicity and lack of features of C
are contributing factors. An other observation is that the successful software
projects that do use C, tends to use older versions of C and restrict the use of
features. The resent success of Python and Lua, over more complex languages
like Perl also indicate that simple readable languages with fewer features are in
fact more reliable.

Potential lesson: A general focus on clarity over expressiveness and clever-
ness, in language design could lead to safer and simpler code. We should start
looking at abstractions with a more critical eye in computer science. For C
developers, this means avoiding complex macros, and using long and expressive
naming. There are also many opportunities here to improve tooling. Com-
pilers reason about code in order to optimize it, but rarely does it show the
programmer its reasoning. It would be very valuable if code paths that are opti-
mized away, assumptions made about values possible ranges, or memory model
assumptions where presented to the user.

Theory 2: C is fun.
Many C programmers claim that C is a programming language they enjoy us-
ing. The fun factor is an underestimated factor in programming. An enjoyable
programming experience, leads to more engagement and long term maintenance
of software project. A weak software project that is consistently updated and
improved over a long period of time will eventually surpass a good software
project that no one cares to improve. Something that speaks for this theory
is that so many of the mentioned C projects are open-source project mainly
maintained by volunteers. For a volunteer project to succeed motivation is key.

2



Potential lesson: From a security perspective, we need to find the right bal-
ance between safety procedures and the joy and agility of programming. If every
change results in onerous re-certification processes, and pointless warning and
procedures that needs to be addressed, software will not be maintained properly.
We need to find ways to better triage where the risks are and spend our time
accordingly and avoid making necessary changes hard to make.

For other languages, we may also consider where the fun lies. C++ is a program-
ming language that many people greatly enjoy architecting code. It has a rich
set of features to choose from, to build intricate structures. These structures,
while fun to invent, are less fun to maintain, hence most C++ programmers
have never seen any C++ code they did not want to rearchitect. It is an open
question how to design languages that remains fun to program in as projects
grow, but it should be explored seriously.

Theory 3: Control matters
C gives the programmer a very high degree of control. As I am fond of saying:
“In the beginning all you want is results, in the end all you want is control”.
Because C offers little in terms of pre-made facilities and a minimal standard
library, you have to do most things yourself. This means that if you complete a
project in C, you have a much more complete understanding of your software,
than if written in a higher level language. This deep understanding is critical
for identifying potential security vulnerabilities. Linus Torvalds once observed
that when he writes C, he can in his mind see the assembly instructions being
executed.

Theory 4: C is somewhat uniform
Compared to a language Like C++ where many different styles and paradigms
exists, C is relatively simple. Because so many other languages like C++, Java
and others borrow syntax from C, many non-C programmers are able to read
and understand C to some degree. This ligua franca of computing aids in getting
many more eyes on critical code and therefore makes C code more secure. Unlike
languages like C++ there is less divergence in the options of how the language
should be programmed simply because there are fewer ways to do things. This
also makes it easier for open source projects to attract more developer who can
contribute.

Potential lesson: We should put higher weight on writing plain code, and
avoid clever tricks or new language features. We can create new guidelines and
tools that evaluate code according to these guidelines. MISRA, and CERT are
such guidelines focusing on safety and security, but additional guidelines that
focus on simplicity, readability, and portability could be created.

3



Theory 5: Security doesn’t matter as much you think
It is possible that C is successful despite its apparent security shortcomings, sim-
ply because users have different priorities. The main priority that could override
security is Cs performance. Performance isn’t just about how long something
takes to execute it also translates in to battery life, power consumption, hard-
ware scale, cooling costs, CO2 emissions, and directly to cost of operation. For a
large scale cloud operations a few percentage points of performance degradation,
translates in to hundreds of millions in added capex for hardware, power and
cooling. Data centres alone are estimated to use 3-4% of all generated power
by the end of the decade, and added to this is all the power consumed by other
devices running C based software. Even a small degradation of efficiency at this
scale results in large costs and CO2 emissions.

Switching from trusted legacy C software, to new comparably untested software
written in an other language, with substantially higher running cost, with the
promise of better future security is a substantial leap of faith.

Further evidence for this theory is that, C does not have to be memory unsafe.
The C standard clearly states that any implementation is free to define a safe
and documented behaviour for anything left undefined by the standard. Such
implementations exist such as UBSan and Valgrind. It is entirely possible for
anyone who prioritizes security to run any C software in these implementations.
Yet, few people do (outside of debugging), this indicates that the majority of
users have other priorities.

If things like performance and memory usage are highly valued properties of C
software, perhaps this popularity affords C projects more time to mature and
therefor address other issues like security issues.

Potential lesson: Security professionals need to learn to accept that they
live in a world where other considerations often take precedence over security.
An example of this is various speculative execution mitigations that have been
needlessly forced on most users. These mitigations have probably cost untold
billions. These costs are rarely taken in to consideration when security is being
discussed, and while many security changes have negligible impact on a specific
system, in the aggregate, and when staked on to of layers of security protections,
on a global scale have very large impacts.

Theory 6: C Is old
C enjoys some advantages of being old, in that many projects have had time
to mature and people have had time build up skills and knowledge about the
language. Similarly C has wide range of tools and implementations that are
mature and offers a lot of advantages. Most safety critical software have had
years to mature and gain trust. While this factor can explain some of Cs success,
many languages like C++ or Java are now old enough that if they would have

4



offered significant advantage over C, they should have supplanted C by now,
this clearly hasn’t happened.

Potential lesson: Computer science needs to stop equating new with better.
You can not prove a negative, and therefor there is no way to prove that software
is free from flaws. In fact, the best way we have of evaluating if something is
good, is its longevity. This goes for languages, and code bases a like.

Theory 7: C programmers are different.
It is possible that C programmers are so used to dealing with things like memory
management that, it becomes a natural part of how they think, and therefore
presents far less far fewer issues than an outsider may suspect.

For a pedestrian who is not used to cars, living in a city where 2 tone metal
boxes race down the streets at 50kph may seem like an extremely dangerous
environment where inhabitants are contently under immense stress to avoid
being hit by cars. For anyone who have coexisted with cars in a city for a long
time, its a known risk, but one that one that represent an insignificant portion
of lives worries. To developers coming from languages where memory is handled
for you, the task can feel daunting, but to long time C developers it is a natural
part of development that take up very little brainpower to maintain. On the
scale of things C experienced programmers worry about memory management
ranks low as there are other much more challenging tasks that needs to be
completed.

Partly this is a result of experience, but its also that, people who seek out C,
and chose to program in C are wired in a way that fits well with Cs design. C
programmers do tend to be a different bread of programmers, who want to get
close to the metal, and value control over convenience.

Potential lesson: Perhaps we should consider C programmers separate, and
recognize that C is a language that requires a different mindset to master than
another languages. While many programmers tend to be able to switch lan-
guages often, maybe we should be more careful about who is assigned to pro-
gram C. Instead of teaching C as yet another language, perhaps it should be
treated more as a specialty. Advertising for C/C++ programmers isn’t very
helpful when the two languages require very different skills and mindsets.

Theory 8: C developers are self selecting good program-
mers.
Perhaps the language C has the advantage that it simply attracts good pro-
grammers. It is even conceivable that the perceived challenge of writing C code
contributes to its popularity among seasoned programmers. This would mean
that C projects are in part successful, because C programmers tend to be good

5



programmers, and that these projects would see similar success with the same
people using a different language. Linus torvalds famously pronounced that he
wont let C++ in to the Linux Kernel, for the simple reason that he doesn’t want
to work with people who like C++.

Potential lesson: If many of the best programmers choose C, then maybe C
isn’t that bad.

Theory 9: Its about tooling
Most languages only have one or very few implementations, while C enjoys
a wide range of implementations with very different aims. C also has many
different debuggers, linters, fuzzes and static analysis tools that aid in debugging.
The range, quality and maturity of C tools greatly aids in development or robust
software.

Potential lesson: Many other languages would do very well to focus more on
tooling then syntax. IMO having a good debugger is by far the most important
tool for a programmer, yet many programmers don’t use debuggers, and many
languages have very few debugging tools. While C has a lot of tools, there are
still great improvements that can be made.

Theory 10: C fails fast and hard.
C is famous for its unforgiving nature. Because so many C bugs cause segfaults
or other showstopping issues, much fewer bugs survive debugging. Modern
C tools often make C even more unforgiving by detecting things like reads of
uninitialized variables. This is a much stricter requirement than a language that
may automatically initialize all values, and this forces developers to explicitly
state their intention, as compilers do not assume that the user wants a default
initialization. Many languages in the name of convenience, lets the programmer
get away with things that do create hard to find bugs. For example java script
lets you access object members without first declaring them. You can easily
write object->member = 42; and then by mistake try to access the value x
= object->Member; Java script will then assign x a default value, instead of
issuing an error. Yes its convenient to not have to declare members in advance,
but saving a few seconds of typing and then loosing hours to debugging or worse
shipping broken software is much worse.

Potential lesson: Policies that force programmers to engage with issues and
ambiguities, instead of issuing warnings, or worse make assumptions about the
users intentions are important to improve security. Most C compilers can be
configured to fail compilation when it encounters selected warnings. This could
be made much stricter, where more code is rejected, even though it technically
is standard compliant. Implicit type conversions is one such feature that should

6



not have been made part of C, but can easily be detected and remedied with
tools.

Theory 11: The issues are known.
As an old and well known language the issues in C are mostly well known.
The fact that the language is smaller than many other languages, means that
compilers and other infrastructure is less likely to encounter code that trigger
an unexplored corner case. Most of the security issues are well known and easy
to audit for. Because C is so wide spread there is also a large amount of people
who are able to review and read C code.

Theory 12: Survivorship bias
Given that C code has been so successful, any issue in this widely deployed C
code gets and outsized impact. A security vulnerability in OpenSSL has far
greater ramifications, than another SSL implementation that don’t have nearly
as many users, no matter what language it was implemented in. Other languages
like javascript, and SQL code, that have well known exploits have a much more
diffuse attack surface. There are numerous websites that have a wide range
of exploits, and may have lots of vulnerabilities, yet the finding of an exploit
would not raise the headlines that an exploit in a widely used C system like the
Linux kernel. Given the size and scope of projects like the Linux kernel and
the number of people who have eyes of the project, its surprising how seldom
serious exploits are found.

Potential lesson: Its worth appreciating how seldom major security issues
appear in major security critical software’s written in C.

Theory 13: The roads not taken.
Any person who finds bugs in someone else’s code, will have a bias against the
design decisions that made the bugs possible or likely. This is another form of
survivorship bias. However what they do not see are the issues that the design
prevented. All engineering is inherently about trade-offs. Any decision will
make some issues more likely and some other issues less likely. It is possible
that while the design trade-offs in C creates some classes of bugs that reoccur,
it on balance prevents much more issues, then it creates.

A good engineer, in any field, knows that she has to weigh the potential risks and
benefits of any decision. Trying to cover for all risks, no matter how miniscule
is to not properly allocate time, effort and resources on the problems that are
likely to cause problems. Security researches have along track record of raising
security issues that have a extremely low probability of being exploited.

7


	Why is C the safest language?
	Theory 1: Its about readability.
	Theory 2: C is fun.
	Theory 3: Control matters
	Theory 4: C is somewhat uniform
	Theory 5: Security doesn’t matter as much you think
	Theory 6: C Is old
	Theory 7: C programmers are different.
	Theory 8: C developers are self selecting good programmers.
	Theory 9: Its about tooling
	Theory 10: C fails fast and hard.
	Theory 11: The issues are known.
	Theory 12: Survivorship bias
	Theory 13: The roads not taken.


