
The Verse Networked 3D Graphics Platform
Emil Brink

The Emotional and Intellectual Interfaces
Studio, Interactive Institute

P.O. Box 24081
SE104 50 Stockholm, Sweden

+46-(0)8-7832470

emil.brink@interactiveinstitute.se

ABSTRACT
This paper introduces the Verse platform for networked multiuser
3D graphics applications. The heavily client/server-oriented
nature of the network architecture is described and motivated, as
is the very heterogenuous client concept. The data storage model
is introduced, as are several features of the object representation.
A single-primitive approach to high-quality graphics based on a
hybrid of Catmull-Clark and Loop subdivision surfaces is
described, together with a high-level material description system.
Verse is briefly compared to several existing projects.

Keywords

Virtual reality, networked, subdivision surfaces, subscription,
client/server, methods.

1. INTRODUCTION
The Verse project was started at the Interactive Institute in June of
1999, in an attempt to make the threshhold for working with
networked 3D graphics applications lower. It was felt that existing
tools and architectures either were not open enough, lacking in
modern features, or both.

Verse is, at its core, a custom network protocol optimized to
describe 3D graphics data according to a certain data format. The
data format, in turn, is optimized for flexibility and dynamism.
Around these two components, we are trying to build an entire
platform

By basing the platform on an openly available communications
protocol, we try to encourage and simplify independent
development and interoperability.

1.1 General Philosophy
The general idea with Verse is to create a platform that can
support various kinds of applications involving networked 3D
graphics. We want the platform itself to be have a fairly “low
profile,” so that it leaves as many design and policy issues as
possible to the application developer. Data describing graphics
should be of the highest possible quality, and should describe the
objects without regard to how they are rendered by clients. Verse
is not intended to be a research prototype, but should be good
enough for real-world use.

2. ARCHITECTURE
The bulk of this paper will describe various aspects of Verse’s
architecture, including network and data storage issues.

2.1 Client/Server
Verse as a whole is designed as a client/server system. There is a
single central server, to which multiple clients connect. The server
stores the data describing the world, and clients can then connect
to the server and read and write the data it stores. The server
"knows" which clients are reading which data, and distributes any
changes accordingly.

We favor a pure client/server approach rather than a peer-to-peer
or hybrid network architecture for several reasons. One is that by
making all the data that describe a world reside in a single
process, administration and ownership of the world becomes
easier to understand. Also, we feel that access security is easier to
achieve if there is a single point through which all accesses must
go. Persistance also comes naturally in a client/server system: as
long as the server is kept running, the world persists.

2.1.1 A Lightweight Server
The most important characteristic of the server in the Verse
architecture is that it is small, both theoretically (it has few
responsibilities) and in practice (as a computer program it is not
very big1). Conceptually, all the server does is store data, provide
an interface through which that data can be accessed, keep track
of which client is accessing what data, and forward changes.

2.1.2 Heterogenuous Clients and Servlets
The word "client" is heavily used when discussing Verse. This is
because since the server does so little, much of the work other
systems might put in the server is delegated into clients. Programs
that are "server-like" in their nature, but technically Verse clients,
are often called "servlets". We assume that the administrator of a
server will also chose a set of desired additional services and run
the required servlets on (or near) the machine that hosts the server
itself. A future version of the server might incorporate support for
running clients inside its own memory space, thus preserving the
strict separation while minimizing communication overhead.

2.2 Data Organization
From one perspective, Verse can be seen as a network-accessible
special-purpose database. This section describes how data are
stored and managed in Verse.

1 Currently, the server is roughly 100 KB in binary executable

form (stripped, on Linux x86).

2.2.1 Nodes
Data stored by the Verse server are divided into a set of discrete
entities called nodes. Several distinct types of nodes exist, each
one is specialized to store a subset of the data required to describe
a world. Currently, the types object, geometry, material, bitmap,
code and emitter have been defined.

Object nodes are used to represent entities that should be visible
in the world. An object is given a "look" by linking it to geometry
and material nodes. Material nodes in turn link to bitmap nodes
for textures and other image-like data. An object can be given a
method interface, in which case it might use a code node to store
the implementation. The emitter node is supposed2 to express
various emissive effects, such as sound and particles.

Each node is identified by a 32-bit unsigned integer identification
number, assigned by the server upon creation. Node IDs are
globally unique on a server.

2.2.2 Node Commands
Each node type defines its own set of commands that operate on
the data stored in the node. Node commands are the only thing
sent by the Verse network protocol; all communication between a
Verse server and its connected clients is done using node
commands. Commands are symmetrical, meaning that the same
command is often used both as a request and as a reply.
Communication in Verse is mainly client-driven; the server does
not send unrequested data to clients.

2.2.3 Subscriptions
The concept of subscription forms the basis of Verse's data
distribution design. Clients need to actively tell the server which
nodes they are interested in, by subscribing to them. Nodes
typically contain smaller parts which are in turn subscribable. A
client learns about the subscribable parts of a node by subscribing
to something at the next higher level, beginning by subscribing to
the node itself.

2.2.4 Dynamic Data
One of the most important aspects of Verse, that differentiates it
from many existing systems, is that all data stored and handled by
it are fully dynamic.

Things such as an object’s geometric representation, or a color
bitmap for texturing, are transmitted and handled so that very
small parts of these data structures are always addressable and
thereby changeable at any time. For example, any vertex in a
Verse geometry node can be moved at any time, polygons can be
created and destroyed at will, bitmaps can be repainted ”on the
fly”, and so on. This dynamic nature makes Verse well suited for
realtime networked cooperative applications.

The data storage formats and the node commands that express
them have been designed so that, from a client’s perspective, there
really is no difference between the ”original” and ”changed”
versions of e.g. a vertex position. They both look exactly the
same, which makes it easier to write clients to support this level of
dynamism.

2 The emitter node is currently being redesigned, and might go

away or be renamed soon.

2.3 Network Layer
Networking is of course important in a system such as Verse. We
use a custom-built asynchronous protocol designed to send node
commands, layered on top of unicast UDP.

2.3.1 UDP
Verse uses UDP, a low-level datagram transport protocol that is
part of the TCP/IP standard suite of protocols. UDP, unlike TCP,
does not guarantee that datagrams sent using it actually reach their
destination; they can be dropped at any point in the network. This
means that Verse must handle dropped datagrams itself, by doing
resends. Verse uses UDP rather than TCP because it is inherently
better suited for realtime applications, and also because it gives us
more control over the flow of datagrams.

2.3.2 Unicast
Verse datagrams are sent using ”classic” unicast semantics, i.e.
each datagram has only one recipient. This is in contrast to the use
of multicast [7], where each datagram is sent to an entire group of
recipients. There are many reasons why we do not use multicast in
Verse. One is that the basic service provided by it, efficient one-
to-many data distribution, does not fit well with a general 3D
world. All clients do not want all data; each client only wants the
data is is subscribed to. An alternative might be to use one multi-
cast group per node, but that is not very appealing either. First,
IPv4 reserves no more than 24 bits (0.39%) of its address space
for multicast groups, while Verse’s node ID space is a full 32 bits.
Second, separating transmissions into distinct multicast groups
means more datagrams in total, which increases the cost of per-
datagram overhead. Third, Internet-wide support for multicast is
still rather limited.

2.3.3 Asynchronous
The network layer is asynchronous; commands are collected into
datagrams which are then emitted. The recipient decodes the
datagram and generates a stream of command envocations, which
is handled either by the server or delivered to the client (by the
VLL helper library, see below). Each datagram is handled
separately, without regard for the datagrams that preceeded it, or
the ones that will succeed it. The datagrams are given a sequential
number, so that lost (dropped) ones can be detected. When this
happens, a resend is eventually done.

When commands are collected into datagrams to be sent, the
network layer uses knowledge it has about each command's
content to overwrite duplicates when possible. This is a form of
event compression, and conserves bandwidth by not sending
redundant data over the network.

2.3.4 VLL
Client programmers do not need to know much about how Verse
looks "on the wire". Instead, they use our application
programming interface (API) VLL, which is delivered as a C link
library. By calling functions in VLL, a client program can
establish a connection to a server, and also exchange data with it.
For the most part, functions in VLL map 1:1 to node commands,
which are sent to the server. When a reply comes back, the client
program is notified through a callback function, which is called
with the command’s parameters (if any) as its arguments.

2.4 Object Nodes
Nodes of type object are arguably the most important nodes used
in Verse. For something to be visible in a world, it has to be
associated in some way with an object node. Each connected
client is given an object node that represents that client in the
world hosted by the server. This object is known as the client’s
avatar, but there is nothing special about it. It is just like all other
object nodes.

2.4.1 Transform
Verse currently uses a fairly simple transform system to express
object movements. It is based on a clock, which measures time in
milliseconds. The clock is synchronized between client and server
when the client connects, using a simplistic measurement of the
network latency that separates the two. An object’s transform
consists of the three quantities position, rotation and scale.
Changes to each of these three quantities can be done at the
zero'th, first or second derivative.

As an example, an object's position is controlled by the following
equation, familiar from simple Newtonian physics:

2

)(
)()()(

2ttr
ttrtrttr

∆′′
+∆′+=∆+

Where r(t) is the last known position at time t, r′ and r ′′ denote
the first and second temporal derivatives of the position
respectively, and Ät is the time step being simulated.

Because all commands that handle transforms using this system
include a timestamp for when they should take effect, it is
possible to build up a queue of events in advance, if the events are
known beforehand. This decouples the network traffic that
describes a series of transform changes from the changes them-
selves, which is sometimes useful.

Setting a transform quantity’s value directly (at derivative level 0)
is akin to ”teleporting” the object, and will likely be restricted in
worlds that try to appear realistic. In that case, movement must be
done by setting either a velocity or an acceleration.

The current transform system handles only the entire object as a
rigid whole. This will be extended in the future to support internal
transformations, for skeletal animation and object embedding.

2.4.2 Tags
Verse object nodes contain a system for storing application-
managed named values, called tags. Each tag stores one value,
which can be of either integer, floating-point, textual or
unformatted binary type. Tags are arranged into tag groups, each
of which is a subscribable entity. The Verse server does no
interpretation of the content of tags; tag data is viewed as being
totally owned and controlled by the applications that use the
objects.

Tags are intended to be used by applications that need to extend
objects with domain-specific data. For example, a game might
need to associate a health value with each player. Tags provide a
flexible and straight-forward way of doing this.

2.4.3 Methods
In addition to the tag system, which stores application-defined
"passive" data in objects, there is also support for storing
something called methods [1]. A method is simply a description

of a program entry point associated with the object. The
description does not include any code or other implementation of
the method; this is left to dedicated clients. Methods can accept
parameters of various types, much like functions in C. However,
object methods do not have return values, mainly because the
underlying network layer is inherently asynchronous.

Methods are collected into method groups, which are named and
subscribable. The intended use is to allow various kinds of
specialized behavior and/or "intelligence" to be associated with
objects. In the full-fledged version of method use, the code that
implements each method is stored on the server in a code node,
and interpreted by a general virtual machine client. It is, however,
entierly possible to write dedicated clients that only deal with
handling calls to methods in a given group, bypassing the code
node and code interpretation completely.

As an example of how methods could be used, consider a general
3D world where clients connect and navigate around through the
use of avatars. Navigation might be done through the use of
keyboard and mouse input, as is common on the PC platform.
Without methods, the browsing client would directly translate
keypresses into transform commands sent to the object node
representing the avatar. If the avatar is given a set of methods for
movement, the client would instead issue calls to these methods
when corresponding keyboard keys are pressed. Somewhere,
perhaps on the same machine as the server, another client would
receive the method calls and translate them into object transform
commands. Using the method system in this way allows important
properties of an object, such as its control interface, to be
abstracted out in a way we find very flexible.

2.4.4 Linking
Object nodes do not contain data about things such as geometry or
material properties directly. Instead, such data is stored and
managed by instances of dedicated node types, and the object
node simply links to these instances as needed.

Other nodes can also contain node pointers, for example material
nodes often need to refer to bitmap nodes that act as data sources
for texture mapping and filtering.

Data stored in a node can be shared between multiple users by
simply letting each user link to the desired node. For example,
two objects with the same geometry will link to the same
geometry node. They can still have different materials, by linking
to distinct material nodes.

2.5 Graphics
Since Verse is ultimately a system for building networked 3D
graphics applications, it naturally contains quite a bit of
mechanism for handling the actual graphics. Specifically, it has a
flexible geometric primitive and a material description system.

2.5.1 Creased Subdivision Surfaces
Unlike many other systems and file formats for virtual reality and
networked graphics, Verse has a single primitive used to represent
graphics. We use a hybrid of Catmull-Clarke [4] and Loop [14]
subdivision surfaces, and support meshes that mix triangles and
quadrilaterals freely. Also, these surfaces have been extended with
crease data for vertices and edges, allowing sharp features to be
expressed accurately and simply.

We feel that subdivision surfaces have many features that make
them a good choice for a networked graphics system. They are a
form of higher-order surface representations, which means that
arbitrary geometric detail can be generated from a small initial
description, thus conserving network bandwidth and ensuring
client-side quality scalability. They support smooth, curved
surfaces, thus making them useful for organic models such as
human-looking avatars. With the addition of creases, well-defined
hard edges are simple to express as well. Further, since our
subdivision scheme works on arbitrary meshes of triangles and
quads, they are very easy to work with from a modeling
perspective, lacking the constraints that make working with e.g.
NURBS surfaces occasionally troublesome.

Further, subdivision surfaces lend themselves very well for dis-
placement mapping [13], thereby giving us a way to represent
highly detailed surfaces in a compact manner.

By chosing just a single geometric primitive and sticking with it,
we hope to reduce the burden on rendering implementors while
also making content creation easier and more rational. Please note
that subdivision surfaces are “backwards-compatible” with plain
polygonal meshes; by making all vertex and edge creases as sharp
as possible, the entire subdivision scheme is essentially short-
circuited and the base control mesh survives unchanged.

2.5.2 Material System
The material node is used to express how the surface of an object
should look. It does this by defining a set of operands and
operations, and then letting them be connected to form a graphical
data flow description of a material.

As an example, consider Figure 1. This shows a very simple
material, containing just two fragments; an output and a color.
The output fragment is always at the root of a particular
description. The type field in the fragment selects what aspect of
the surface’s material is described by the tree, with “color” being
typical. The color fragment simply defines a constant (R,G,B)
triplet. Linking the front field of the output to the color fragment
expresses the idea that front-facing polygons in objects having
this material should be colored by the linked-to color. The back
field is left unconnected, which means that back-facing polygons
can be culled away (they have no material, so they are invisible).
Note that this simple material assigns the exact same constant
color to all polygons; no shading or lighting is done.

Through the use of other more advanced fragments, the material
system is capable of expressing a wide range of properties.
Recursive texture mapping, refraction, BRDFs and micro-
geometry, for instance, are some of the more advanced effects that
are easily expressed by the material node. Figure 2 shows a
slightly more advanced material, namely the default way to do a
single lit color texture map. The blender fragment multiplies the

light with the texture, and passes the result to the output fragment.
The figure itself is a cropped screenshot from Adamant, a realtime
online graphical material editor for Verse.

Figure 2. Simple lit texture map material.

In the general case, an abstract description of a material is much
easier to come up with than a program to render an object using
that material. The material system is easily capable of expressing
materials that today are far from possible to render in realtime, or
even at all. The idea here is that the description of an object stored
on the server should be as "perfect" as possible, leaving it up to
(rendering) clients to do a "best effort" attempt to approach it in
practice. This provides a way of achieving some form of future-
proofness in the system, since as rendering technology develops,
clients can be adapted and old objects start to look better.

2.5.3 Particles and Effects
Much work is currently being done in designing and testing a
general system for expressing and simulating a wide variety of
particle system effects. Such effects are commonly used to mimic
natural-world phenomena like smoke, fire, liquids and hair.

2.6 System Overview
Running an application using Verse typically involves many
processes, all working with the data held and distributed by the
server.

Figure 3 shows a schematic picture of how Verse looks when used
for some kind of simple application. At the top center of the figure
is the server itself, surrounded by a pair of servlets. Below the
dotted line is the “true client” side of the network, showing a
couple of connected browser clients. Note how both servlets and
end-user clients communicate with the server through the same
VLL library. Technically, there is no difference at all between a
servlet and a client; the term servlet only implies that that
particular client is best suited to run close to the server, for
reduced latency.

2.7 Client Freedom
One important thing in Verse is that the client has a large amount
of freedom in deciding what to actually do with the data made
accessible by the server.Rendering, for example, is not in any way
a built-in, intrinsic part of the system itself. A rendering (or

Output
type "color"

front

back

Color
red 1.0

green 0.0

blue 0.0

Figure 1. A simple material.

server
Physics Simulator VLScript Interpreter VL

Browser/renderer

VL

Browser/renderer

VL

Figure 3. Example Verse system configuration,
schematic overview.

browsing) client is just another client, that happens to present the
data describing geometry and materials graphically.

Consider the (touched-up) screenshots of Figures 4 and 5. Figure
4 is from a very simple prototype-quality renderer, while Figure 5
depicts Enough, a much more ambitious renderer. Both clients are
connected to the same server, so the data they base their displays
on is identical. The renderer in Figure 5 uses the full subdivision-
surface scheme, while the one in Figure 4 simply renders the
control mesh as-is.

Since display is decoupled from data management, client
programmers have lot of freedom in how they chose to interpret
and operate upon the data stored on a server. This means that
Verse is not inherently tied to polygonal rendering. A client could
be written that visualizes the subdivision surfaces using
raytracing, or maybe by exporting the scene to some off-line
rendering package.

3. VERSE VS. EXISTING SYSTEMS
This section will briefly compare Verse to some other existing
systems and technologies. The area of multi-user 3D-graphical
application frameworks is growing very rapidly, so this section is
far from complete.

3.1 Active Worlds
The Active Worlds system, by Activeworlds.com Inc. [1], is a
commercial system for building interactive 3D worlds. Users can
build new structures in the worlds, and also move existing objects

around. However, creation is done by chosing from a library of
ready-made objects; users cannot build new objects from scratch.

Since Active Worlds is commercial, hosting a world requires that
a server license be purchased. The cost of a server license depends
on the size of the world hosted (in virtual square meters) and the
maximum number of simultaneous users.

3.2 Cult3D
Cult3D [3], by Cycore [5], is a technology that allows interactive
3D objects to be embedded into ordinary documents, most notably
web pages and PDF files. The objects can have interactive
features, such as a button that pops open the lid of a cassette
player. The objects are, however, static and can not be
permanently changed by the user. The experience is also strictly
one-to-one; multiple users cannot see and manipulate the same
copy of an object at once.

Cult3D is primarily intended for product visualization, by
extending existing ”flat” documents with embedded 3D objects
that users can do simple manipulations of. This is in contrast to
Verse, which is more aimed at creating fully immersive 3D
worlds.

3.3 DIVE
The Distributed Interactive Virtual Environment (DIVE) [9] is a
research prototype for a multi-user 3D VR system developed by
the Swedish Institute for Computer Science (SICS).

DIVE is loosely coupled, using peer-to-peer networking. It uses
both reliable and non-reliable communications, both running on
top of IP multicast. Objects in DIVE can have dynamic behavior
described by scripts written in Tcl/Tk [12]. Being a prototype,
DIVE is made available for restricted use only.

Although fundamentally different in network architecture, Verse
and DIVE are similar in scope, although Verse (in our opinion)
takes a more minimalist approach. The design of Verse focuses on
data organization and distribution, and does not include things
such as user interface widgets, file formats, or input sensor
support. Verse aims to be useful for all kinds of applications
involving networked 3D graphics, including research.

3.4 VRML97
VRML97 [12] is an ISO standard file format for describing
interactive 3D objects and worlds. The focus of VRML97 is to
define a format for ordinary text files that describe 3D scenes.

VRML97 is a fairly large standard; it defines over 50 distinct
node types, including at least ten different geometry nodes (such
as Cone, Cylinder, PointSet, etc.).

VRML97 does not in itself deliver a platform for multiuser
networked interactive 3D. There have been many developments of
such worlds, but these are all outside of the VMRL97 standard
itself. Verse, in contrast, lacks a standardized file format, since
our focus is almost completely on how to handle a world once it is
up and running on a server.

The Verse distribution includes a very simple tool that allows
some VRML97 scenes to be (partially) imported into Verse.

3.5 vrtp
The virtual reality transfer protocol (vrtp) [2] is an effort to create
a communication protocol to support VRML in the same way that
http [6] supports HTML [16].

Figure 5. Subdivided mesh (high-quality renderer).

Figure 4. Base mesh (simple rendering client).

The vrtp architecture aims to support not only client/server and
peer-to-peer network approaches, but a full spectrum in between.
An important part of the architecture is improved network
monitoring, i.e. various forms of automated measurements of
network parameters, useful for optimizing the protocol and
simplifying its use.

The vrtp developers intend to establish a dedicated network
offering “moderately high bandwidth and guaranteed low latency”
in order to test and optimize the protocol. Verse, in contrast, is
being designed and optimized to run over the general public
Internet.

4. WORKING WITH VERSE
Work with Verse focuses on developing or adapting clients. The
intent is that the server, data format, and overall architecture all
should be general enough not to require changes for particular
applications. Instead, an “application” consists of one or more
clients that are run as appropriate, to get the desired results.

End-user rendering is a large task, and again the intent is that
existing renderers should be general enough to be re-used for all
or most applications. Still, there’s nothing preventing anyone
from developing a rendering client of their own if they feel a need
or commercially viable opportunity to do so.

5. FUTURE WORK
The evolution of Verse will require numerous additional
subsystems. The most important of these have been narrowed
down to the following.

5.1 Force-Based Transformations
The current transformation system is based on direct assignment
of position, velocity and acceleration to one of the three quantities
(translation, rotation and scale). While this works well for simple
movements, it is rather limited. For example, it does not easily
allow friction to be modeled, since no term for friction is included
in the underlying equation.

A better approach, which we will be implementing is to replace
the explicit movement model with a new one based on forces. In
this model, moving an object would be done by excerting a force
on it. Multiple forces would add, moving the object in the
resulting direction.

5.2 Animation Subsystem
Verse currently lacks support for animation, so all objects are
completely rigid. This will be solved by implementing a rather
comprehensive and powerful animation system, based on
parameterized mesh morphing and hierarchical transformations.

5.3 Physics Client
A great number of "typical" applications for a system such as
Verse will require some form of physics simulation. At the very
least, collision detection and enforcement to prevent avatars from
passing through objects is needed for even very simple
applications. The server design currently does not include any
such functionality; it is all left to clients. Therefore, a physics
simulation client is a high-priority task for the future development
of Verse as a platform.

6. CONCLUSIONS
After almost two years of´development by a team of only two
people, Verse is showing definitive promise. Most of the time,
Verse works, and it works well. We feel that the dynamic and
flexible nature of the platform show much promise. More users
would be a great boon, and various activities are under way to try
and attract these.

7. ACKNOWLEDGEMENTS
We would like to thank the Interactive Institute for making this
work possible in the first place, and also for providing such a
wonderfully diverse and interesting workplace. Special thanks to
Mark Ollila at the Institute for helping me put this paper together.

Verse is being developed as free software, with open sourcecode.
The licenses used are the GNU General Public License [10], the
GNU Lesser General Public License [11], and the BSD license
[15].

Like thousands of other such projects, we are thankful of the free
hosting for such projects provided by SourceForge [17]. The
official homepage for Verse is at http://verse.sourceforge.net/.

8. REFERENCES
[1] Active Worlds. http://www.activeworlds.com/ (valid March

2001).

[2] Brink, E. Dynamic Method Calls In A Networked 3D
Environment. Master’s thesis, Royal Institute of Technology,
Department of Numerical Analysis and Computer Science.
TRITA-NA-E0077 (2000).

[3] Brutzman, D., Zyda, M., Watsen, K., and Macedonia, M.
virtual reality transfer protocol (vrtp) Design Rationale.
Workshops on Enabling Technology: Infrastructure for
Collaborative Enterprises (WET ICE): Sharing a Distributed
Virtual Reality, Massachusetts Institute of Technology,
Cambridge Massachusetts, June 18-20 1997.

[4] Catmull, E., and Clark, J. Recursively generated B-spline
surfaces on arbitrary topological meshes. Computer Aided
Design 10, 350-355 (1978).

[5] Cult3D. http://www.cult3d.com/ (valid March 2001).

[6] Cycore. http://www.cycore.com/ (valid March 2001).

[7] Deering, S. Host Extensions for IP Multicasting. Internet
Engineering Task Force RFC 1112. http://www.ietf.org/
rfc/rfc1112.txt (valid April 2001).

[8] Fielding, R., et al. Hypertext Transfer Protocol -- HTTP/1.1.
Internet Working Group RFC 2616. http://www.w3.org/
Protocols/rfc2616/rfc2616.txt (valid March 2001).

[9] Frécon, E., and Stenius, M. DIVE: A Scalable Network
Architecture for Distributed Virtual Environments.
Distributed Systems Engineering Journal (special issue on
Distributed Virtual Environments), Vol. 5, No. 3, Sept.
1998, pp. 91-100.

[10] Free Software Foundation. GNU General Public License.
http://www.gnu.org/copyleft/gpl.html (valid March 2001).

[11] Free Software Foundation. GNU Lesser General Public
License. http://www.gnu.org/copyleft/lesser.html (valid
March 2001).

[12] International Standard ISO/IEC 14772-1:1997. The Virtual
Reality Modeling Language.
http://www.vrml.org/technicalinfo/
specifications/vrml97/index.htm (valid March 2001).

[13] Lee, A., Moreton, H., and Hoppe, H. Displaced Subdivision
Surfaces. Proceedings of SIGGRAPH 2000, ACM Press, 85-
94.

[14] Loop, C. Smooth subdivision surfaces based on triangles.
Master’s thesis, University of Utah, Department of
Mathematics, 1987.

[15] Open Source Initiative (OSI). The BSD License.
http://www.opensource.org/licenses/bsd-license.html (valid
March 2001).

[16] Ousterhout, J. Tcl and the Tk Toolkit, Addison-Wesley,
ISBN 0-201-63337-X, 1994.

[17] SourceForge free project hosting service. http://sourceforge.
net/ (valid April 2001).

[18] The World Wide Web Consortium. HTML 4.01
Specification. 1999. http://www.w3.org/TR/1999/REC-
html401-19991224/ (valid March 2001).

